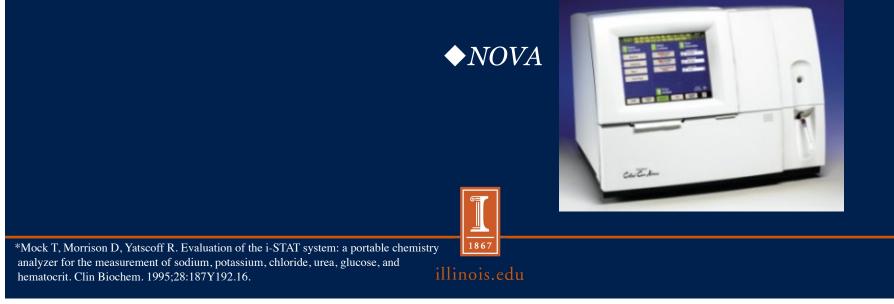
Evaluation of the Enterprise Point-Of-Care (EPOC) System for Blood Gas and Electrolyte Analysis in Dogs

Luiz Bolfer, DVM Intern, Small Animal Medicine and Surgery


Objective

 Evaluate the analytical precision and comparability of blood gas and electrolytes analyses of the Enterprise Point-of-Care (EPOC) system to the Stat Profile Critical Care Xpress Analyzer (CCX - NOVA) in dogs.

Introduction

- Point-of-care testing (POCT)
 - Emergent Conditions Quick decisions
- MDB (Blood Gas, Electrolytes, Metabolites)
- Blind or delayed treatment when POCT is not available*

Introduction

- Previous study compared EPOC to i-STAT in people
- Results showed that EPOC has comparable performance

• i-STAT

EPOC

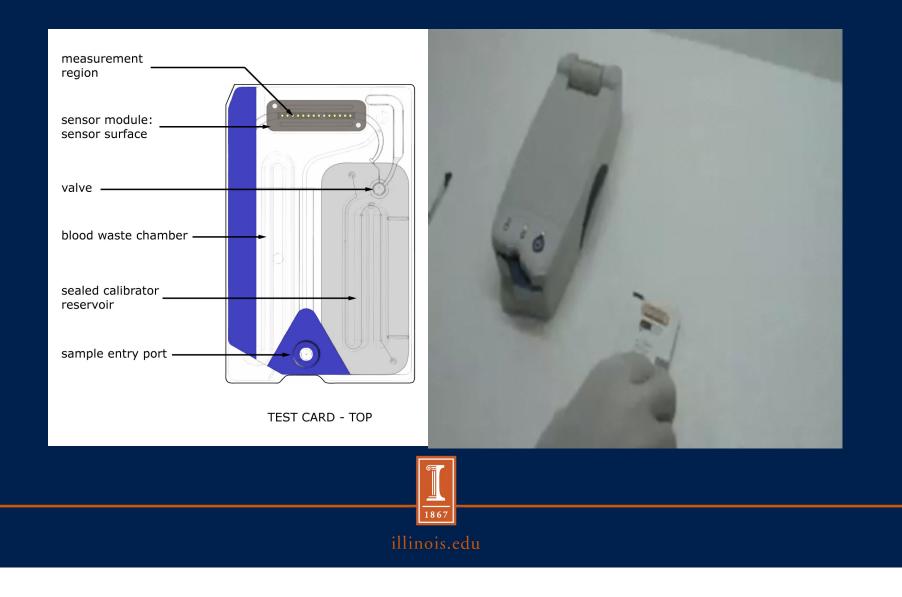
EPOC

• Enterprise Point-of-care*

*Epocal, Corp. Ontario, Canada

Test Card

Reader


PDA - Host Mobile Computer

epoc EL			EPOC Data	a Mana	ger			
Connected to : EDM	DB 2.1.0 User: er	oocsysadmin		EPOC Link	@ 192.168.10.10	: 45002 🖌 DB : 🖌	2.1.0 Log	Off
EPOC Manager > Te	ests > Blood Tests							
Blood Tests QA	Tests EPOC System							_
Blood Tests (las	st 7 days) - 24 tests							
My Tests	Select Filter Type	Select Filter V	/alue	Y From	10/23/2008 🗸	To : 10/29/2008 🗸	Refresh	
Date/Time	Patient ID	Operator	Host	Reader	Status	Critical	LIS	
29-Oct-08 14:33		administrator	EPOC Host 0055B8C	Aldin QA Rdr	Incomplete	-	Not Sent	
29-Oct-08 14:27	administrat 12	administrator	EPOC Host 0055B8C	Aldin QA Rdr	IQC	-	Not Accepted	
29-Oct-08 14:23		administrator	EPOC Host 0055B8C	Aldin QA Rdr	Incomplete	-	Not Sent	
29-Oct-08 14:14	administrat11	administrator	EPOC Host 0055B8C	Aldin QA Rdr	Incomplete	-	Not Sent	
29-Oct-08 13:48	administrat10	administrator	EPOC Host 0055B8C	Aldin QA Rdr	iQC	-	Not Accepted	
29-Oct-08 13:17	administrat00	administrator	EPOC Host 0055B8C	Aldin QA Rdr	OK	yes	Not Accepted	
	administrator	administrator	EPOC Host 0055B8C	Aldin QA Rdr	Incomplete	-	Not Sent	-
28-Oct-08 16:13								

Data Manager Software

EPOC Test Card

Test Card Reagents

Measured Values

- pH
- pCO2
- pO2
- Sodium
- Potassium
- Ionized Calcium
- Glucose
- Lactate
- Hematocrit

Calculated Values

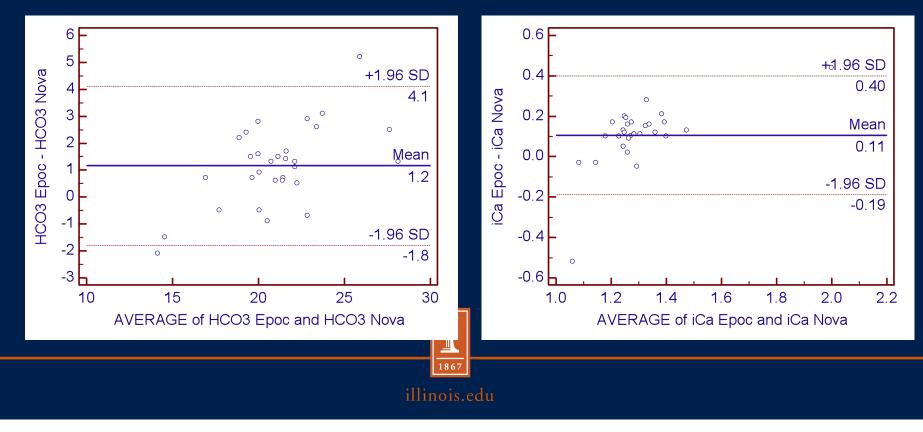
SCIECII

- HCO3
- TCO2

EPOC Hos		1 17:00	EPOC Hos		1 06-Feb-09 17:01	EPOC Hos		1 17:01
Pat Id 01	08		Pat Id 010	18		Pat Id 01	08	
Blood	06-Feb-0	9 15:41:21	blood	06-Feb-	09 15:41:21	blood	06-Feb-0	9 15:41:21
Measur	ed Calculated	Corrected	Measured	Calculated	Corrected	Measure	d Calculated	Corrected
Analyte	Result	Ref	Analyte		Ref	Analyte	Result	Ref
pН	7.185	+	dHgb	13.4 g/dL		pH(T)	7.159	+
pC02	54.0 mmHg	+	HCO3-act	20.4 mmol/L	+	pC02(T)	59.0 mmHg	t
p02	191.0 mmHg	+	cTCO2	22.1 mmol/L		p02(T)	201.8 mmHg	t
Na+	115 mmol/L	+	BE(ecf)	-7.8 mmol/L	+			
K+	4.4 mmol/L		BE(b)	-8.2 mmol/L	+			
Ca++	0.54 mmol/L	+	02SAT	99.4 %	+			
Hct	40 %							
T						T		
Tests 01			Tests 010	16 1		Tests 01	08	

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Materials and Methods

- Canine venous sample was collected in heparinized green-top collection tubes – Total 30 samples
- Samples were analyzed within three minutes of collection
- EPOC + Test Cards provided by Epocal
- Comparative analyzer (NOVA) provided by the University of Illinois – VTH – Emergency Service


UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Materials and Methods

- Venous sample was first run on NOVA and the result used for clinical treatment
- Leftover sample was used immediately to test the EPOC system
- The two results were saved and analyzed using the Bland-Altman Plot

Results

• EPOC correlated well with NOVA for all analytes tested with no clinically significant differences noted.

- Acute care settings require rapid turnaround of blood tests
- Blood gas analysis traditionally require a bench -top analyzer
- Handheld analyzers EPOC, small size and minimal maintenance requirement.
- EPOC was analytically comparable to NOVA

- EPOC previous studies in people.
- Performance of the EPOC system was comparable to the i-STAT analyzer for all analytes with correlation coefficients ranging from 0.880 to 0.990.

- Comparison of Epoc to i-STAT in Horses.
 - Wide range of samples from different clinical cases
 - *Ph*, *pCO2*, *pO2*, *HCT*, *Na*, *K*, *iCa*, *Glu*, *and Lac*
 - Correlation coefficient ranged from 0.921 to 0.997
- Comparison of Epoc to i-STAT in Dogs (unpublished data)
 Clinically similar results

- Technical Advantages noted:
 - Room temperature storage test cards
 - Wireless capabilities
 - Technical work

Conclusions

- New portable blood analyzer for conducting critical care testing at the point of care.
- Initial menu of blood gas and electrolytes demonstrated similar clinical results to the NOVA system
- Overall the operators found the EPOC to be easy to use

References

- 1. D_Orazio P, Fogh-Andersen N, Okorodudu A, et al. Chapter 5: Critical care. In: Nichols JH, ed. National Academy of Clinical Biochemistry (NACB) Laboratory Medicine Practice Guidelines: Evidence-Based Practice for Point-of-Care Testing. Washington, D.C.: AACC Press; 2006:30Y43.
- 2. Cambridge Consultants. Point-of-Care: The Demise of High Throughput Screening? Diagnostic Report. Boston, MA: Cambridge Consultants; 2006:1Y9.3. Stephans EJ. Developing open standards for point-of -care connectivity. IVD Technol. 1999;5:22Y25.4.
- 3. Krouwer JS, Tholen DW, Garber CC, et al. Method Comparison and Bias Estimation Using Patient Samples; Approved Guideline. (EP9-2A). 2nd ed. Wayne, PA: Clinical Laboratory Standards Institute (CLSI); 2002:1Y55.5.
- 4. Burnett RW, Ehrmeyer SS, Moran RF, et al. Blood Gas and pH Analysis and Related Measurements: Approved Guideline. (C46-A).
- 5. Wayne PA: Clinical Laboratory Standards Institute (CLSI); 2001:1Y38.6. Koch DD, Peters T. Table 13-2 allowable error recommendations in Chapter 13 selection and evaluation of methods. In: Burtis CA, Ashwood ER, eds. Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia, PA: WB Saunders Co.; 1999:323.7. Department of Health and Human Services. Clinical Laboratory Improvement Amendments of 1988. Final rule: laboratory requirements. Fed Regist. 1992;57:7002Y7288.8.
- 6. Fraser CG, Petersen PH, Libeer J-C, et al. Proposals for setting generally applicable quality goals solely based on biology. Ann Clin Biochem. 1997;34:8Y12.9.
- 7. Fraser CG, Petersen PH. Desirable standards for laboratory tests if they are to fulfill medical needs. Clin Chem. 1993;39:1447Y1453.10.
- 8. Fraser CG. Biological variation in clinical chemistry. An update: collated data, 1988Y1991. Arch Pathol Lab Med. 1992;116:916Y923.11

References

- 1. Erickson KA, Wilding P. Evaluation of a novel point-of-care system, the i-STAT portable clinical analyzer. Clin Chem. 1993;39:283Y287.14.
- 2. Jacobs E, Vadasdi E, Sarkozi L, et al. Analytical evaluation of i-STAT portable clinical analyzer and use by nonlaboratory health-care professionals. Clin Chem. 1993;39:1069Y1074.15.
- 3. Mock T, Morrison D, Yatscoff R. Evaluation of the i-STAT system: a portable chemistry analyzer for the measurement of sodium, potassium, chloride, urea, glucose, and hematocrit. Clin Biochem. 1995;28:187Y192.16.
- 4. Gault MH, Harding CE. Evaluation of the i-STAT portable clinical analyzer in a hemodialysis unit. Clin Biochem. 1996;29:117Y124.17.
- 5. Dascombe BJ, Reaburn PR, Sirotic AC, et al. The reliability of the i-STAT clinical portable analyzer. J Sci Med Sport. 2007;10:135Y140.18
- 6. H, Bartholomew C, Bonzagi A, et al. Evaluation of the IRMA TRUpoint and i-STAT creatinine assays. Clin Chim Acta. 2007;377: 201Y205.19.
- 7. Baier KA, Markham LE, Flaigle SP, et al. Point-of-care testing in an organ procurement organization donor management setting. Clin Transplant. 2003;17(suppl 9):48Y51.20.
- 8. Backer HD, Collins S. Use of a handheld, battery-operated chemistry analyzer for evaluation of heat-related symptoms in the backcountry of Grand Canyon National Park: a brief report. Ann Emerg Med. 1999;33: 418Y422.21.
- 9. Burritt MF, Santrach PJ, Hankins DF, et al. Evaluation of the i-STAT portable clinical analyzer for use in a helicopter. Scand J Clin Lab Invest. 1996;224:121Y128.22.
- 10. Smith SM, Davis-Street JE, Fontenot TB, et al. Assessment of a portable clinical blood analyzer during space flight. Clin Chem. 1997;43: 1056Y1065.

Acknowledgments

- Dr. Maureen McMichael
- Dr. Mauria O'Brien
- Dr. Mark Mitchell
- Dr. Joe Ritter
- Jessica Garrett
- Abby Schraeder
- Leiah Carney
- Kristi Donze

