Training will be started at 10:10 AM(GMT +2)

Please chat us or speak if you would need any assistance

All participants would be muted to eliminate noise while presentation

Vcheck T4 & TSH

Thyroid function tests

BIONOTE Marketing team Mar. 2020

Vcheck T4 & TSH

- Thyroid Hormones (T4, T3, TSH)
- The Thyroid Feedback Mechanism

Vcheck T4 & TSH Thyroid gland

- The thyroid glands are paired structures located along the trachea, about halfway down the neck of dogs.
- These glands produce <u>thyroxin</u>, a hormone that regulates the body's metabolism.

Vcheck T4 & TSH Thyroid gland

• Negative feedback

Vcheck T4 & TSH Thyroid Hormones

Vcheck T4 & TSH Effects of thyroid hormone

- Thyroid hormones are the primary factors for the control of basal <u>metabolism</u>.
- Thyroid hormone is important for the normal regulation of metabolic rate and activity in many tissues.
- Canine <u>hypothyroidism</u> is the common disease related to thyroid function in dogs.
- Feline <u>hyper</u>thyroidism is the most common endocrine disease affecting old cats.

Vcheck T4 & TSH

Canine hypothyroidism

Hypothyroidism in dogs is a disorder where the <u>thyroid gland in the neck doesn't secrete</u> <u>enough thyroxine</u>, a hormone that controls metabolism.

- One of the most common canine endocrine diseases
- Low concentrations of thyroid hormones (T4, T3) in the blood
- Results from impaired production and secretion of thyroid hormone

- Primary (Thyroidal) hypothyroidism (95%)
 - \checkmark Due to destruction of the thyroid gland itself
 - Idiopathic atrophy of the thyroid, lymphocytic thyroiditis
- Secondary (Pituitary) hypothyroidism (<5%)
 - \checkmark Impaired ability of the pituitary gland to secrete TSH
 - \checkmark Anterior pituitary dysfunction, destruction from neoplasia

✓ Signalment

- Age
 - Middle-aged
 - Mean age 7 years, with a range of 4-10 years
- Breed
 - Large breed dogs (Golden Retrievers, Doberman Pinchers)
 - Rare in miniature and toy breeds
- Sex
 - Either sex at about the same rate
 - Neutraled males and females have higher risk than intact ones.

▲ Hypothyroidism in Golden Retrievers

Several breeds are genetically predisposed to the disorder, including ...

Golden Retrievers
Greyhounds
Irish Setters
Labrador Retrievers
Miniature Schnauzers

✓ Clinical signs

An underactive thyroid affects so many bodily functions that rely on thyroxine.

- \Rightarrow Symptoms of the disorder vary widely
 - Lack of energy

Hallmark sign

- Frequent napping
- Exercise intolerance
- Loss of interest in running and playing
- Weight gain without increase in appetite or calorie intake
- Low tolerance for the cold
- Dull, dry, brittle, thin or greasy coat
- Hair loss or failure to regrow clipped hair

▲ Hair loss in a dog with hypothyroidism

▲ Weight gain without increase in appetite in a dog with hypothyroidism

✓ Diagnosis ①

Never base a diagnosis on a single test result!

Based on a combination of clinical signs, physical examination, CBC, biochemistry, test of thyroid gland function.

• Haematology

- Mild normocytic, normochromic, non-regenerative anemia (~4-50%)

• Serum Biochemistry

- Hypercholesterolemia (75%)
- Mild elevations in liver enzymes (ALP, ALT)

✓ Diagnosis ②

Never base a diagnosis on a single test result!

Based on a combination of clinical signs, physical examination, CBC, biochemistry, test of thyroid gland function.

Thyroid Function Tests

- Serum Total T4 (TT4)
 - A good screening test (high sensitivity)
 - Low specificity especially in the presence of concurrent disease
 - \Rightarrow Increases markedly if used in conjunction with endogenous TSH analysis
- Serum TSH (Thyroid Stimulating Hormone)
 - Primary hypothyroidism: Low T4 & High TSH
 - Poor sensitivity
 - \Rightarrow Approaches 100% in combination with a low fT4 or TT4

- Serum Free T4 (fT4)
 - Measures unbound fraction of T4
 - Influenced less by euthyroid sick syndrome

[Mechanism]

- As thyroid hormone production drops,
- \Rightarrow <u>Negative feedback</u>
- \Rightarrow TSH levels secreted will be increased in response.

✓ Diagnosis ②

Thyroid Function Tests

• <u>T4</u> + <u>TSH</u> combination test is mandatory for diagnosis of canine Hypothyroidism.

				Constant of the
		Vcheck		Get Ale: #CR0600 Rev No: 05P0603 %//
		T4		3377
-	1	 10 Wheek 14 Test devices to according that backs 	 20 Disposable placete tins 1 Instructions for use 	10 TESTS/KIT
	1 4 15	 ID bisposable tablet pipettes (vellow bulb) 		GIONOTE

✓ Diagnosis ②

Thyroid Function Tests

Additional test (Ex. Free T4) is warranted in the following scenarios:

- If serum T4 is <1.0 ug/dL, but hypercholesterolaemia and clinical signs are absent.
- If severe systemic illness is present and the potential for <u>ESS</u> is high.
- If drugs known to decrease serum T4 concentration are being administered (prednisolone, phenobarbitone, etc).

What Is Euthyroid Sick Syndrome (ESS) ?

- Thyroid gland is secondarily affected by disease in some other organ system
 - <u>Other endocrine diseases</u>
 (Hyperadrenocorticism. Diabetes mellitus)
 - <u>Liver, cardiac, renal, pancreatic, lung etc.</u>
 (Cardiomyopathy, demodicosis, hepatitis, infections, renal failure)
- ✓ So, the diagnosis of hypothyroidism should never be based on a hormone assay alone, <u>but depends on a large range of findings</u>

✓ Diagnosis ②

Thyroid Function Tests

- $\underline{T4} + \underline{TSH}$ combination test is mandatory for diagnosis of canine Hypothyroidism.
- Combination of elevated serum TSH and decreased T4 or fT4 has a specificity of 98% for diagnosis of hypothyroidism

Thyroid Tests	T4 Normal	T4 Decreased	
cTSH Normal	 Euthyroid * End thyroid investigation 	 Non-thyroidal illness (NTI) Drugs 20% of hypothyroid dogs 	Perform further tests (Ex. free T4) for accurate diagnosis!
cTSH Increased	 Sulfonamide treatment Recovery from NTI * Withdraw drug Tx and retest * Wait until recovery complete and retest 	 Hypothyroid * Treat with T4 therapy 	Diagnosis of hypothyroidism in dogs

Considerations

Greyhounds, Scottish deerhounds: <u>have low T4 levels naturally</u>

 \Rightarrow Diagnose based on clinical signs as well as test results; treat if clinically evident.

- Remember sick animals and animals on certain medications (anti-epileptics) may have depressed T4 levels.
 (Euthyroid sick syndrome) ⇒ Wait and re-test after treatment of underlying cause if clinical signs persist.
- <u>Several medications</u> have been demonstrated to lower the serum T4 concentration of dogs.

Drugs That Alter Canine Thyroid Hormone Function or Test Results

- ✓ Prednisone (high dose)
- ✓ Phenobarbital
- ✓ Trimethoprim–sulfamethoxazole
- ✓ Aspirin (high dose)
- ✓ Clomipramine
- \checkmark Thyroxine supplementation

Case Study-1

- Signalment
 - Age: 11 year-old
 - Sex: Castrated Male
 - Breed: Cocker spaniel

- Tests Performed
 - Physical examination
 - CBC & Serum chemistry
 - Thyroid hormones testing

▲ 11Y, Castrated Male

- Chief Complaint
 - Lethargy, Dull
 - Dermatologic lesion (Alopecia)

Case Study-1

*Test Results

- Hormone test
- CBC: mild anemia
- Serum Chemistry

Name	Reference	Result	Name	Reference	Result
ALB	2.9-4.2	2.6	ALKP	15-127	791
ALT	19-100	293	AST	0-50	97
GGT	0-6	55	T-bil	0-0.4	0.4
ТР	5.4-7.4	6.8	Са	7.8-12.0	8.8
CRE	0.8-1.6	0.85	Chol	135-345	>520
GLU	70-118	99	TriG	10-100	178
BUN	8-31	14	Phos	3-6.2	3.2

▲ 11Y, Castrated Male

• Final Diagnosis

- Canine Hypothyroidism
- Treatment
 - Levothyroxine 0.02 mg/kg bid PO

Vcheck T4 & TSH

Feline hyperthyroidism

Hyperthyroidism is one of the most commonly diagnosed diseases of the older cat.

- The most **common endocrinopathy** of older cats.
- Increase in production of thyroid hormones (T3, T4) from an enlarged thyroid gland
- Bilateral (70%) / Unilateral (30%)
- Cause: unknown
 - **Possible contributing factors**: deficiencies or excesses of certain compounds in the diet and chronic exposure to thyroid-disrupting chemicals in food or the environment

✓ Signalment

▲ Feline Hyperthyroidism

• Age

- Older than 8 years (Most)
- Mean age: 12–13 years
- Breed
 - Siamese and Himalayan breeds are at decreased risk

• Sex

- Either sex at about the same rate
- Neutraled males and females have higher risk than intact ones.
- Risk Factor
 - Consumption of tinned cat food (especially fish or liver and giblet flavour)
 - The use of cat litter

✓ Clinical signs

Develops a variety of signs that may be subtle at first but that become more severe as the disease progresses.

▲ Weight loss in a cat with hyperthyroidism

• Weight loss

Hallmark sign

- Increased appetite
- Hyperactivity and Aggression
- Vomiting (up to 30% of cases)
- Diarrhea
- Increased thirst and urination (PU/PD)
- Unkempt, matted, or greasy coat

 The thin, unkempt appearance of a cat with hyperthyroidism.

✓ Diagnosis ①

Never base a diagnosis on a single test result!

Based on a combination of clinical signs, physical examination, CBC, biochemistry, test of thyroid gland function.

• Physical examination

- Palpation of the cat's neck area to check for an enlarged thyroid gland
- Thyroid gland enlargement is palpable in 90 % of cases.
- Ophthalmoscopic examination
 - Reveals evidence of hypertension with retinal vessel engorgement and rarely retinal detachment.

▲ Palpation for an enlarged thyroid gland

✓ Diagnosis ②

Never base a diagnosis on a single test result!

Based on a combination of clinical signs, physical examination, CBC, biochemistry, test of thyroid gland function.

Haematology

- Increased haematocrit (40–50% of cases)
- Some might show a stress leukogram.

• Serum Biochemistry

- Increased ALT, ALP (more than 75% of cases)
- Hyperphosphataemia (20% of cases)
- Increased BUN, Creatinine
 - * Concomitant renal disease is common in older cats.

▲ Concurrent Hyperthyroidism and Chronic Renal Failure in Older Cats

✓ Diagnosis ③

Thyroid Function Tests

The best screening test for the diagnosis of hyperthyroidism is the total T4 (TT4) concentration.

• Serum Total T4 (TT4)

- The best screening test (high sensitivity)
- An increased Total T4 is specific for hyperthyroidism
- However, false negative results may occur with non-thyroidal illness(NTI)
 - (e.g., CKD). \Rightarrow Repeat the test in two weeks

• Serum free T4 (fT4)

- More sensitive compared to total T4
- However, More false positive results

✓ Diagnosis ③

✓ Diagnosis ③

Thyroid Function Tests

What if the results are border line?

- The simplest approach
 - Wait 2 weeks
 Retest the T4 concentrations again
- With some chronic concomitant diseases,
 - T4 concentration depressed into the upper normal range (by the principal of the sick euthyroid syndrome)
 - \Rightarrow Elevated free T4 + other classic clinical findings

Euthyroid sick syndrome

- Geriatric cats with hyperthyroidism may also have concurrent chronic kidney disease (CKD).
- ✓ Concurrent chronic kidney disease (CKD)
 - Depresses thyroid hormone concentrations
 - ⇒ making it more difficult to diagnose hyperthyroidism

Considerations

SM SDMA Feline

NT-proBNP

Comprehensive Evaluation

T4

- SDMA: Hyperthyroidism can mask the diagnosis of concurrent chronic kidney disease (CKD)
 - \checkmark Increases glomerular filtration rate (GFR) in cats with CKD
 - \Rightarrow Reductions in BUN Creatinine, SDMA levels \Rightarrow Makes it more difficult to detect concurrent CKD
 - ✓ CKD will become apparent after treatment of the hyperthyroidism. \Rightarrow <u>Retesting for CKD should be</u> <u>performed in 2-3 months.</u>
- NT-proBNP: No differences between hyperthyroid cats and cats with HCM
 - Cardiovascular abnormalities in hyperthyroid cats:
 - Diverse and comprise subtle, clinically inconsequential myocardial changes
 - (+) Severe changes that can be associated with development of heart failure.
 - \Rightarrow Myocardial abnormalities resolve after treatment in many cats, but persist in others.
 - ✓ Hyperthyroid cats with increased NT-proBNP with echocardiographic abnormalities should be <u>re-evaluated ≥3 months after resolution of hyperthyroidism.</u>

Case Study

• Signalment

- Age: 10 year-old
- Sex: Sprayed female
- Breed: Korean shorthair cat

Chief Complaint

- Weight loss for 1 year
- Aggression increased

Tests Performed

- Physical examination
- CBC & Serum chemistry
- Electrolyte
- Thyroid hormones testing (T4)
- Auscultation
- NT-ProBNP testing
- Ultrasonography

▲ 10Y, Sprayed female, Korean shorthair cat

Case Study

- Tests Results
 - Palpation: No enlarged thyroid gland
 - CBC: mildly increased HCT
 - Auscultation: No murmur
 - Serum chemistry: Increased ALT 272 (10-100)
 - NT-ProBNP: negative result
 - Ultrasonography: No enlarged thyroid gland (3mm)
 - Total T4: 6.6 ug/ml (0.8-4.7)
- Final Diagnosis
 - Feline Hyperthyroidism

▲ 10Y, Sprayed female, Korean shorthair cat

Product Introduction

- Vcheck T4
- Vcheck TSH

Specifications

- Species: Dog, Cat
- Sample: Serum 50 µl
- Testing Time: 20 min.
- Measuring Range: 0.5~8 µg/dL (6.44~102.96 nmol/L)

Test procedure

Result Interpretation (Dog)

Diagnosis of Canine hypothyroidism and treatment monitoring

Result Interpretation (Cat)

Diagnosis of Feline hyperthyroidism and treatment monitoring

Evaluation Data

• Correlation with analyzer 'l' of company 'S'

- Species: Dog
- Sample: Serum 100 µl
- Testing Time: 15 min.
- Measuring Range: 0.25~5.00 ng/ml
- Result Interpretation

< 0.5 ng/ml	>0.5ng/mL
Normal	High

Test procedure

Ω

Draw 100 µl of serum and add it into an assay diluent tube

Mix well 5-6 times by using a 100 µl pipetting

Ø

Add 100 μl of mixture

Evaluation Data

• Correlation with analyzer 'l' of company 'S'

Variation per analyzer

Patient	VCHECK	Laboratory 1	Laboratory 2	Laboratory 3	Laboratory 4
PIES BONO	1,23 µg/dl	2,42 µg/l	х	х	X
PIES ARGO	2,47 µg/l	2,94 µg/l	2,4 µg/l	х	х
PIESLADY	1,29 µg/l	1,78 µg/l	1,55 µg/l	х	х
PIESMAFI	3,5 µg/l	х	2,51 µg/l	х	x
PIES MISIU	5,99 µg/l	4,06 µg/l	3,39 µg/l	5,59 µg/l	х
PIES ISKIERKA	1,45 µg/l	1,57 µg/l	1,58 µg/l	2,28 µg/l	x
PIESLUNA	3,12 µg/l	3,34 µg/l	х	4,35 µg/l	3,4 µg/l
PIES DORA	1,88 µg/l	1,7 µg/l	1,98 µg/l	3,55 µg/l	2,4 µg/l
PIES DROPSIK	2,57 µg/l	2,25 µg/l	1,99 µg/l	3,18 µg/l	х
PIES FIGA	2,94 µg/l	3,24 µg/l	2,94 µg/l	х	x
PIES ROXI	2,42 µg/l	х	2,39 µg/l	х	х
PIES GAGA	2,61 µg/l	2,94 µg/l	2,88 µg/l	4,26 µg/l	2,9 µg/l
PIES BARI	2,4 µg/l	1,69 µg/l	1,67 µg/l	2,55 µg/l	1,7 µg/l
PIES MIMI	2,05 µg/l	1,66 µg/l	1,75 µg/l	2,63 µg/l	1,7 µg/l
PIESMAX	3,28 µg/l	1,79 µg/l	1,77 µg/l	х	1,7 µg/l
PIESHERA	1,38 µg/l	1,38 µg/l	1,53 µg/l	х	1,39 µg/l
PIESNEL	2,25 µg/l	1,48 µg/l	1,6 µg/l	х	1,49 µg/l
PIESLILI	1,51 µg/l	1,57 µg/l	х	2,32 µg/l	1,7 µg/l

• Lab 1,2,3,4 uses same analyzer

("I" from company "S")

- Same sample was sent to each laboratory
- Result vary per analyzer

Thank you for your attention Any Questions?

BIONOTE Marketing team Mar. 2020

